Opinion Dynamics & Multistep Epigenetic Switch

Anahita Mirtabatabaei
Center for Control, Dynamical Systems & Computation
University of California at Santa Barbara

September 16, 2010

Advancement to Candidacy Examination

Motivations

- Economics (Sznajd-Weron, 2002)
- Politics (Ben-Naim, 2005)
- Physics (Ben-Naim et al., 2003)
- Sociology (Tavares, 2007)

Can we convince others to follow us?

- n agents, with n bounds of confidence $\{r_1, \ldots, r_n\}$
- agent i has opinion $x_i(t) \in \mathbb{R}$
- j is i's out-neighbor if $|x_i(t) - x_j(t)| \leq r_i$

Hegselmann-Krause (HK) model

$$x(t + 1) = A(x(t), r)x(t)$$

$$a_{ij}(x(t), r) = \begin{cases}
\frac{1}{\# \text{ of } i\text{'s neighbors}} & \text{if } j \text{ is } i\text{'s out-neighbor} \\
0 & \text{otherwise}
\end{cases}$$
Homogeneous HK
- converges in finite time
- the order of opinions is preserved
- in steady state agents are in agreement or disconnected

Heterogeneous HK
- may converge in infinite time
- pseudo-stable configurations
- disconnected clusters may reconnect

Conjectures
- when does convergence start?
- what is the final value?
- who moves and who stops?
- rate and direction of moving ones?
- do all heterogeneous HK’s converge?
Classification of Agents

- Open-minded
- Moderate-minded
- Closed-minded
Opinion Dynamics & Multistep Epigenetic Switch

Conjectures

when does convergence start?
what is the final value?
who moves and who stops?
rate and direction of moving ones?
do all heterogeneous HK’s converge?

Final value at constant topology

\[
x^*(x) = \lim_{t \to \infty} A(x, r)^t x = \begin{bmatrix} C & 0 & 0 \\ 0 & M & 0 \\ \Theta_C & \Theta_M & \Theta \end{bmatrix} x
\]

If \(A(x^*(x), r) = A(x, r) \), then
- \(x^*(x) \) is an equilibrium vector
- their proximity graph contains no moderate-minded

Rate of Convergence

Agent’s per-step convergence factor

\[
k_i(x(t)) = \frac{x_i(t+1) - x^*_i(x(t))}{x_i(t) - x^*_i(x(t))}
\]

\[k_i = 1 - \text{rate of convergence of agent } i\]

monotonic convergence toward final value \(\equiv 0 \leq k_i \leq 1 \)
Theorem (Evolution under Constant Topology after τ)

- $x(t)$ converges to $x^*(x(\tau))$
- no moderate minded at τ
- if $\rho(\Theta_\tau) \geq \rho(\Theta_{1,2,3})$, then for all $i \in G_{\Theta_\tau}$ and $j \in G_{\Theta_\tau}$

a) $\lim_{t \to \infty} k_i(x(t)) = \rho(\Theta_\tau)$

b) there exists $T \geq \tau$, after which $(x_i(t) - x_i^*)(x_j(t) - x_j^*) \geq 0$

In a Real Society

- the initial opinion of an open-minded has no effect, $x^* = \begin{bmatrix} C & 0 \\ \Theta_C & 0 \end{bmatrix} x$.
- an individual converges to his final decision as slow as the slowest group.
- the leader govern followers direction and rate.
- one can become a leader by joining a large strongly connected group.

Conjectures

- when does convergence start?
- what is the final value?
- who moves and who stops?
- rate and direction of moving ones?
- do all heterogeneous HK’s converge?

Theorem (Sufficient Conditions for Convergence under Fixed Topology)

At each time step if for x and $x^*(x)$ it holds that

1. $A(x, r) = A(x^*, r)$
2. if $x_i \leq x_j$, then $x_i^* \leq x_j^*$
3. $0 \leq k_i \leq 1$
4. for open-minded neighbors i and j, $\Delta_i \Delta_j \geq 0$
5. for weakly connected open-mindeds i and j

$$k_{\max,j} - k_{\min,j} \leq \min\{1 - k_{\max,j}, k_{\min,j}\} \min\{1 - \alpha \Delta_j, \beta \Delta_i\}$$

where $\Delta = x - x^*$, $n \in \mathbb{Z}^+$, $\alpha \in [k_{\min,j}, k_{\max,j}]$, and $\beta \in [k_{\min,i}, k_{\max,i}]$.

\[\Delta \]
Justification of Theorem Conditions

For any trajectory that converges under constant topology (1)

- x converges to $x^* \rightarrow$ after some τ order is the same (2)
- k_i’s converge to spectral radii $\rightarrow 0 \leq k_i \leq 1$ (3)
- if j is i’s successor, then after some τ

$$\begin{cases}
 \text{if } k_i \leq k_j \quad & \Delta_i \Delta_j \geq 0 \text{ and } k_i \rightarrow k_j \\
 \text{if } k_i \geq k_j \quad & \frac{\Delta_i}{\Delta_i} \rightarrow 0
\end{cases}$$

(4) and (5)

Conjectures

- when does convergence start?
- what is the final value?
- who moves and who stops?
- rate and direction of moving ones?
- do all heterogeneous HK’s converge?

Future Work

- Convergence of heterogeneous HK
 1. what is the basin of attraction of x^*?
 2. what are possible x^*’s for a system?
 3. does the system fall into one of those basing of attractions?

Theorem (Convergence of products of stochastic matrices, Lorenz ’06)

$$\lim_{t \rightarrow \infty} A(t, 0) = \begin{bmatrix} C_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & C_m \end{bmatrix} A(0, 0)$$

- How can one become a leader by changing his r?

Future Work

- Disk Graphs
 - undirected disk graph
 homogeneous HK model
 $$\{i, j\} \in E \quad \text{if } |x_i - x_j| \leq r$$
 - directed disk graph
 heterogeneous HK model - confidence
 French model - influence
 $$\{i, j\} \in E \quad \text{if } |x_i - x_j| \leq r_i$$
 $$\{i, j\} \in E \quad \text{if } |x_i - x_j| \leq r_j$$
Motivations

Biology
- biofilm formation
- persistence
- adherence

Controls
- tristable
- phase variation
- epigenetic

protein production dynamics

phase varying dynamics

\[
\begin{align*}
\beta_{\text{on}} & : Y \xrightarrow{\alpha Y} \emptyset \\
\beta_{\text{partial}} & : Y \xrightarrow{\alpha Y} \emptyset \\
\beta_{\text{off}} & : Y \xrightarrow{\alpha Y} \emptyset
\end{align*}
\]
Deterministic

\[\dot{Y} = \beta - \alpha Y \quad Y_\infty = \frac{\beta}{\alpha} \]

Stochastic

\[
P(t) = AP(t)
\]

\[
A = \begin{bmatrix}
-\beta & \alpha & 0 & 0 & \cdots \\
0 & -\beta & \alpha & 0 & \cdots \\
\beta & -\beta & -2\alpha & 3\alpha & 0 & \cdots \\
& \ddots & \ddots & \ddots & \ddots
\end{bmatrix}
\]

Aggregation of CME

\[
P_{agg} = BP
\]

\[
B = \begin{bmatrix}
\frac{m_2}{m_1} & \cdots & \frac{m_2}{m_1} \\
\frac{m_3}{m_2} & \cdots & \frac{m_3}{m_1} \\
\alpha & \cdots & \alpha
\end{bmatrix}
\]

\[
P_{agg} = A_{agg}P_{agg}
\]

\[
A_{agg} = \begin{bmatrix}
-\frac{\beta}{m_1} & \frac{m_2}{m_1} & \frac{m_2}{m_2} & \frac{m_2}{m_3} & \alpha & \cdots \\
\frac{m_3}{m_1} & -\frac{m_3}{m_2} & \frac{m_3}{m_2} & \frac{m_3}{m_3} & \alpha & \cdots \\
\alpha & \cdots & \alpha
\end{bmatrix}
\]

\[
\beta(\text{protein number}) = \frac{\beta(\text{a.u.)}}{\Delta \text{fluorescence}}
\]
Opinion Dynamics & Multistep Epigenetic Switch

Lim’s Phase Varying Dynamics

1. **Phase I**: \(\beta_{\text{on}} \) \(\xrightarrow{\alpha} Y \) \(\emptyset \)
2. **Phase III**: \(\beta_{\text{partial}} \) \(\xrightarrow{\alpha} Y \) \(\emptyset \)
3. **Phase V**: \(\beta_{\text{off}} \) \(\xrightarrow{\alpha} Y \) \(\emptyset \)

Protein Production Dynamics

- **Phase Varying Dynamics**

- **Stochastic Modeling of the Two Dynamics**

\[
\dot{P}(t) = AP(t)
\]
OxyR can not bind to hemimethylated
→ hemimethylated DNA plus OxyR is stable

Off gene after replication stays Off
→ OxyR goes off and gives naked gene in Partial state

gene undergoes conformational change
→ has not been observed

Future Work

- Finding the cheapest experiment to justify our model
 - plotting the histograms at each m generations
 - effect of changing the replication rate on histograms
 - appropriate repressor to compare possible models

- Design a controller based on this gene
 - control an unobserved model and still reach permanent Off
 - effect of phase varying rates on probability distribution
 - sensitivity analysis on On-Off switching rates